

Page 1 of 11 Rev. B

93 Series EEPROM Application Note

1. Introduction
This application note provides assistance and guidance on how to use GIANTEC Micro wire serial

EEPROM products. The following topics are discussed one by one:

 Power supply & power on reset

 Power saving

 IO Configuration

 Check completion of Write Cycle

 Write-protect application

 Data throughput

 Schematic of typical application

 Recommended of PCB Layout

 Reference design of software

2. Power supply & power on reset
GIANTEC 93 series EEPROM products work well under stable voltage within operating range specified in

datasheet respectively. For a robust and reliable system design, please pay more attention to the following

items:

2.1 Ensure VCC stable

In order to filter out small ripples on VCC, connect a decoupling capacitor typically 0.1f between

VCC and GND is recommended (Shown in figure 1). In addition, if ERAL or WRALL instruction is

used to operate EEPROM, VCC is required to be above 4.5V, otherwise, these two instructions may

not function properly.

Figure 1: GIANTEC 93 series EEPROM recommended connections

2.2 Power on reset

During power ramp up, once VCC level reaches to the power on reset threshold, the EEPROM

internal logic is reset to a known state. While VCC reaches the stable level above the minimum

operation voltage, the EEPROM can be operated properly. Therefore, in a good power-up reset, VCC

should always begin at 0V and rise straight to its normal operating level, instead of being at an

uncertain level. Shown in figure 2. Only after a good power on reset, can EEPROM work normally.

The operating range of VCC can be found in the datasheet.

Figure 2: Power on reset

Page 2 of 11 Rev. B

93 Series EEPROM Application Note

2.3 Power down

During power down, the minimum voltage level that VCC must drop to prior resume back to the

normal operating level is 0.2V to ensure the proper POR process, Shown in figure 3

Figure 3: Power down

3. Power saving
To reduce the power consumption, the following cases need to be considered:

3.1 Whenever no need to operate EEPROM, CS pin should be driven low. Once CS is low, the device

enters into standby mode for power-saving purpose unless an internal write operation is underway. In

this mode, the power consumption is minimum correspondingly;

3.2 Usually, pull-up or pull-down resistor contributes to power consumption too. Under the same

conditions, big resistor consumes less power, and small resistor consumes more power;;

3.3 The power consumption is maximum correspondingly during its write cycle. If a large amount of data

needs to be written into the EEPROM, definitely the 16-bit memory organization can consume less

time and power than 8-bit memory organization. If there are a lot of data to be read, the sequential

read mode will be recommended. The sequential read mode can improve the read efficiency and

reduce the power consumption as well.

4. IO configuration
The IO configuration of GIANTEC 93 series EEPROM products needs to be considered accordingly as

below:

4.1 In order to reduce the possibility of wrong operation inadvertently due to noise, it is recommended that

CS pin should be tied to a proper pull-down resistor to improve the anti-jamming capability of

EEPROM. The pull-down resistor should ensure MCU could drive EEPROM normally, namely, while

the working voltage of EEPROM is within its operating range, MCU can provide enough current

(more than 2.5μA) for each input pin of EEPROM. For example, when the P1 port of P89C52 of

Philips is used to operate EEPROM, the pull-down resistor value is usually from 100K to 470K.

General speaking, a larger pull-down resistor is recommended to reduce the power consumption.

4.2 GT93C46, GT93C56, GT93C66, GT93C76 and GT93C86 not only support 16-bit memory

organization, but also support 8-bit memory organization. The ORG pin is used to switch the memory

organization, if ORG is low, 8-bit memory organization is enabled, if ORG is high, 16-bit memory

organization is enabled. Connect the ORG pin straight to Gnd or Vcc is recommended. If 8-bit

memory organization is enabled, each address will store an 8 bit data. If 16-bit memory organization

is enabled, each address will store a 16-bit data. For example, figure 4 shows the instruction set of

GT93C46, figure 5 shows the instruction set of GT93C66 and figure 6 shows the instruction set of

GT93C86.

V

Vcc

t
0

VBOT

0.2V

Page 3 of 11 Rev. B

93 Series EEPROM Application Note

Figure 4: GT93C46 instruction set

Figure 5: GT93C66 instruction set

Figure 6: GT93C86 instruction set

Page 4 of 11 Rev. B

93 Series EEPROM Application Note

5. Check completion of Write Cycle
Once EEPROM receive a WRITE, WRALL, ERASE or ERAL instruction and recognize a transition from

high to low on CS, it will enter its internal write cycle. During this cycle, EEPROM writes data to specified

address. Because the write cycle time (normally less than 5ms) cannot be foreseen accurately, and the

EEPROM cannot respond to any instructions during this internal cycle, it is necessary to wait till the write

cycle completion to execute other instructions. Usually a fixed delay process is executed immediately after

those WRITE types of instruction, this maybe a simple and convenient solution, but not the best one

obviously. Because most probably the write cycle will take less time than delay process offered, that is to

say most likely fixed delay process will reduce the efficiency of data transmission. Therefore, it is

recommended to use polling the DOUT pin solution. In this way, the wait time will be reduced to minimum

level, and the data transmission efficiency will be improved as well. The software flowchart of this solution

is shown in figure 7, and the referenced code can be found in chapter 10.

Figure 7: Checking for Write Cycle flowchart

6. Write-protect application
GIANTEC micro wire serial EEPROM provides hardware write protection function. The data in EEPROM

under hardware write protection cannot be written or erased. In applications, please pay attention to the

following cases:

6.1 After POR, EEPROM is under hardware write protection. So WEN instruction must be executed

before send any WRITE type of instructions to device. Once receive WEN instruction, device can be

written or erased.

6.2 After a WRITE or ERASE instruction is executed successfully, it is a good practice to issue WDS

instruction to bring device into hardware protection mode, which will reduce the possibility of wrong

operation inadvertently.

7. Data throughput
To improve the data throughput, the following solutions are recommended:

7.1 In order to improve the data throughput, hardware-wise, the operation frequency between MCU and

EEPROM may be improved. For example, a faster MCU or a higher frequency oscillator may be

chosen, software-wise, the delay between SK transitions need to be reduced, those instructions which

need less machine cycles will be preferred, for example, SETB can save a machine cycle time

comparing with MOV. A traditional 8051 MCU with different frequency oscillator, the maximum SK

frequency that can be realized theoretically is shown in figure 8. Please be noted that the actual SK

frequency should not exceed the maximum frequency supported by EEPROM. (Shown in figure 9)

Page 5 of 11 Rev. B

93 Series EEPROM Application Note

1MHz 6MHz 12MHz 24MHz 48MHz

1MHz 2MHz

Traditional 8051MCU oscillator (VCC=5V)
Description

Theoretic

maximum

SK

frequency

41.7KHz 250KHz 500KHz

Figure 8: The theoretically maximum SK frequency

93C46 93C56 93C66 93C76 93C86
Description

3 MHz 3 MHz 3 MHz 3 MHz

Maximum

supported

frequency

3 MHz

Figure 9: The maximum supported frequency

7.2 The sequential read is recommended to read serial data instead of byte read. The sequential read

consumes less time than byte read, so it can improve the transmission efficiency. The figure 10 shows

the comparison of time consumed between sequential read and byte read in 8-bit memory organization.

These data is from the test with a traditional standard 8051 MCU and the program in chapter 10.

6MHz 12MHz 24MHz

3.673msByte Read 14.692ms 7.346ms16

Tranditional standard 8051MCU oscillator (VCC=5V)
Description

Sequential

Read

Bytes

Number

16 8.242ms 4.121ms 2.061ms

Figure 10: Comparison between sequential read and byte read

7.3 The 16-bit memory organization is recommended to write a large amount of data instead of 8-bit

memory organization. The 16-bit memory organization consumes less time than 8-bit memory

organization, thus improve the transmission efficiency as well. The figure 11 shows the comparison of

time consumed between 16-bit memory organization and 8-bit memory organization. These data is

collected from the test with a traditional standard 8051 MCU and the program in chapter 10.

6MHz 12MHz 24MHz

14.717ms

Tranditional standard 8051MCU oscillator (VCC=5V)

38.436ms 31.202ms 27.625ms

16-bit

organization
16 22.884ms 17.434ms

Description

8-bit

organization

Bytes

Number

16

Figure 11: Comparison between 16-bit organization and 8-bit organization

7.4 While an internal write cycle is underway, please consider the solution recommended in chapter 5 to

check if write cycle is over. The traditional fixed delay solution always consumes more time and thus

reduces the transmission efficiency.

8. Schematic of typical application
The recommended connections are shown in figure 1.

Page 6 of 11 Rev. B

93 Series EEPROM Application Note

9. Recommendation of PCB Layout
In order to reduce the crosstalk interference on Micro Wire bus, the wire length of DIN, DOUT and SK are

recommended to lay as shorter as possible. The longer wire and crossed wire should be avoided. If PCB

size is large enough, the GND line should be lay in the middle of these bus lines.

10. Reference design of software
The schematic referenced by this program is shown in figure 12:

Figure 12: Reference connections

The reference code are shown as followed:

/***

93xx.c

Description:

1.This program is based on GIANTEC Micro Wire EEPROM 93C46 and Keil C51 7.50.

2.The highest oscillator frequency with a traditional standard 8051 MCU supported by this program is 48Mhz.

3.This program demonstrates the different operation in 8-bit and 16-bit memory organization.

**/

#include "reg51.h"

#define BYTE unsigned char

#define WORD unsigned int

#define BOOL bit

#define TRUE 1

#define FALSE 0

sbit IO_CS = P1^0;

sbit IO_SK = P1^1;

sbit IO_DIN = P1^2;

sbit IO_DOUT = P1^3;

sbit IO_ORG = P1^4;

//Define polling Write Cycle maximum retry times

#define POLLING_NUM 5000

#define ShiftToEE(Bit) IO_SK=0;IO_DIN=Bit;IO_SK=1

#define ShiftFromEE(Bit) IO_SK=0;IO_SK=1;Bit=IO_DOUT

#define DATA_BIT_LEN (IO_ORG ? 16 : 8)

#define ADDR_BIT_LEN (IO_ORG ? 6 : 7)

/**

Pattern description：

1.Address EEPROM internal storage address

2.Data Data written into EEPROM

3.Length Byte number read from EEPROM

4.Pdata a pointer to data storage buffer

***/

// Polling write cycle, if success return 1, if timeout return 0

Page 7 of 11 Rev. B

93 Series EEPROM Application Note

BOOL PollingEE();

//Write operation

void WRITE(BYTE Address,WORD Data);

//Read operation

void READ(BYTE Address,BYTE *Pdata,BYTE Length);

//Write enable

void WEN();

//Write all operation

void WRALL(WORD Data);

//Write disable

void WDS();

//Erase operation

void ERASE(BYTE Address);

//Erase all operation

void ERAL();

void main()

{

 BYTE buf_byte[16];

 WORD buf_word[8];

 IO_CS=0;

 IO_SK=1;

 IO_DIN=1;

 IO_DOUT=1;

 //8-bit memory organization demo

 IO_ORG=0;

 WEN(); //Disable EEPROM write protection

 WRALL(0x55); //Write 0x55 into all address of EEPROM

 PollingEE();

 WRITE(0x00,0xaa); //Write 0xaa into address 0x00 of EEPROM

 PollingEE();

 WDS(); //Enable EEPROM write protection

 WRITE(0x01,0x01); //Try to write 0x01 into address 0x01

 PollingEE();

 READ(0x00,buf_byte,16); //Read 16 sequential bytes from address 0x00

 WEN();

 ERASE(0x02); //Erase the data in address 0x02

 PollingEE();

 READ(0x00,buf_byte,16);

 ERAL(); //Erase all data in EEPROM

 PollingEE();

 READ(0x00,buf_byte,16);

 //16-bit memory organization demo

 IO_ORG=1;

 WEN(); // Disable EEPROM write protection

 WRALL(0x55AA); // Write 0x55AA into all address of EEPROM

 PollingEE();

 WRITE(0x00,0x3366); //Write 0x3366 into address 0x00 of EEPROM

 PollingEE();

 WDS(); // Enable EEPROM write protection

 WRITE(0x01,0x4477); // Try to write 0x4477 into address 0x01

 PollingEE();

 READ(0x00,(BYTE *)buf_word,8); // Read 8 sequential words from address 0x00

Page 8 of 11 Rev. B

93 Series EEPROM Application Note

 WEN();

 ERASE(0x02); // Erase the data in address 0x02

 PollingEE();

 READ(0x00,(BYTE *)buf_word,8);

 ERAL(); // Erase all data in EEPROM

 PollingEE();

 READ(0x00,(BYTE *)buf_word,8);

 while(1);

}

//Write operation

void WRITE(BYTE Address,WORD Data)

{

 BYTE i;

 bit temp_bit;

 WORD temp_word;

 IO_CS=1;

 //Send Start bit

 ShiftToEE(1);

 //Send WRITE Opcode

 ShiftToEE(0);

 ShiftToEE(1);

 Address<<=8-ADDR_BIT_LEN;

 for(i=0;i<ADDR_BIT_LEN;i++)

 {

 temp_bit=Address&0x80;

 ShiftToEE(temp_bit);

 Address<<=1;

 }

 temp_word=Data;

 if(!IO_ORG)

 temp_word<<=8;

 for(i=0;i<DATA_BIT_LEN;i++)

 {

 temp_bit=temp_word&0x8000;

 ShiftToEE(temp_bit);

 temp_word<<=1;

 }

 IO_CS=0;

}

//Read operation

void READ(BYTE Address,BYTE *Pdata,BYTE Length)

{

 BYTE i;

 bit temp_bit;

 WORD temp_word;

 IO_CS=1;

 //Send Start bit

 ShiftToEE(1);

 //Send READ Opcode

 ShiftToEE(1);

 ShiftToEE(0);

 Address<<=8-ADDR_BIT_LEN;

Page 9 of 11 Rev. B

93 Series EEPROM Application Note

 for(i=0;i<ADDR_BIT_LEN;i++)

 {

 temp_bit=Address&0x80;

 ShiftToEE(temp_bit);

 Address<<=1;

 }

 //Receive data

 while(Length)

 {

 temp_word=0;

 for(i=0;i<DATA_BIT_LEN;i++)

 {

 temp_word<<=1;

 ShiftFromEE(temp_bit);

 temp_word|=temp_bit;

 }

 if(IO_ORG)

 {

 *(WORD *)Pdata=temp_word;

 Pdata+=2;

 }

 else

 {

 *Pdata=temp_word;

 Pdata++;

 }

 Length--;

 }

 IO_CS=0;

}

//Write enable

void WEN()

{

 BYTE temp_byte;

 BYTE i;

 bit temp_bit;

 IO_CS=1;

 //Send Start bit

 ShiftToEE(1);

 //Send Opcode

 ShiftToEE(0);

 ShiftToEE(0);

 temp_byte=0xc0;

 for(i=0;i<ADDR_BIT_LEN;i++)

 {

 temp_bit=temp_byte&0x80;

 ShiftToEE(temp_bit);

 temp_byte<<=1;

 }

 IO_CS=0;

}

// Polling write cycle, if success return 1, if timeout return 0

BOOL PollingEE()

{

 WORD i;

Page 10 of 11 Rev. B

93 Series EEPROM Application Note

 IO_CS=1;

 for(i=0;i<POLLING_NUM;i++)

 {

 if(IO_DOUT)

 {

 IO_CS=0;

 return TRUE;

 }

 }

 IO_CS=0;

 return FALSE;

}

//Write all

void WRALL(WORD Data)

{

 BYTE i;

 bit temp_bit;

 WORD temp_word;

 IO_CS=1;

 //Send Start bit

 ShiftToEE(1);

 //Send Opcode

 ShiftToEE(0);

 ShiftToEE(0);

 temp_word=0x4000;

 for(i=0;i<ADDR_BIT_LEN;i++)

 {

 temp_bit=temp_word&0x8000;

 ShiftToEE(temp_bit);

 temp_word<<=1;

 }

 //Send Data

 temp_word=Data;

 if(!IO_ORG)

 temp_word<<=8;

 for(i=0;i<DATA_BIT_LEN;i++)

 {

 temp_bit=temp_word&0x8000;

 ShiftToEE(temp_bit);

 temp_word<<=1;

 }

 IO_CS=0;

}

//Write disable

void WDS()

{

 BYTE temp_byte;

 BYTE i;

 bit temp_bit;

 IO_CS=1;

 //Send Start bit

 ShiftToEE(1);

 //Send Opcode

 ShiftToEE(0);

 ShiftToEE(0);

Page 11 of 11 Rev. B

93 Series EEPROM Application Note

 temp_byte=0x00;

 for(i=0;i<ADDR_BIT_LEN;i++)

 {

 temp_bit=temp_byte&0x80;

 ShiftToEE(temp_bit);

 temp_byte<<=1;

 }

 IO_CS=0;

}

//Erase

void ERASE(BYTE Address)

{

 BYTE i;

 bit temp_bit;

 IO_CS=1;

 //Send Start bit

 ShiftToEE(1);

 //Send Opcode

 ShiftToEE(1);

 ShiftToEE(1);

 Address<<=8-ADDR_BIT_LEN;

 for(i=0;i<ADDR_BIT_LEN;i++)

 {

 temp_bit=Address&0x80;

 ShiftToEE(temp_bit);

 Address<<=1;

 }

 IO_CS=0;

}

//Erase all

void ERAL()

{

 BYTE temp_byte;

 BYTE i;

 bit temp_bit;

 IO_CS=1;

 //Send Start bit

 ShiftToEE(1);

 //Send Opcode

 ShiftToEE(0);

 ShiftToEE(0);

 temp_byte=0x80;

 for(i=0;i<ADDR_BIT_LEN;i++)

 {

 temp_bit=temp_byte&0x80;

 ShiftToEE(temp_bit);

 temp_byte<<=1;

 }

 IO_CS=0;

}

	Introduction
	Power supply & power on reset
	Ensure VCC stable
	Power on reset
	Power down

	Power saving
	IO configuration
	Check completion of Write Cycle
	Write-protect application
	Data throughput
	Schematic of typical application
	Recommendation of PCB Layout
	Reference design of software

